Glutamate and ATP signalling in white matter pathology.

نویسنده

  • Carlos Matute
چکیده

Excessive signalling by excitatory neurotransmitters like glutamate and ATP can be deleterious to neurons and oligodendroglia, and cause disease. In particular, sustained activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-d-aspartate (NMDA) receptors damages oligodendrocytes, a feature that depends entirely on Ca(2+) overload of the cytoplasm and that can be initiated by disruption of glutamate homeostasis. Thus, inhibition of glutamate uptake by activated microglia can compromise glutamate homeostasis and induce oligodendrocyte excitotoxicity. Moreover, non-lethal, brief activation of kainate receptors in oligodendrocytes rapidly sensitizes these cells to complement attack as a consequence of oxidative stress. In addition to glutamate, ATP signalling can directly trigger oligodendrocyte excitotoxicity via activation of Ca(2+) -permeable P2X7 purinergic receptors, which mediates ischaemic damage to white matter (WM) and causes lesions that are reminiscent of multiple sclerosis (MS) plaques. Conversely, blockade of P2X7 receptors attenuates post-ischaemic injury to WM and ameliorates chronic experimental autoimmune encephalomyelitis, a model of MS. Importantly, P2X7 expression is elevated in normal-appearing WM in patients with MS, suggesting that signalling through this receptor in oligodendrocytes may be enhanced in this disease. Altogether, these observations reveal novel mechanisms by which altered glutamate and ATP homeostasis can trigger oligodendrocyte death. This review aims at summarizing current knowledge about the mechanisms leading to WM damage as a consequence of altered neurotransmitter signalling, and their relevance to disease. This knowledge will generate new therapeutic avenues to treat more efficiently acute and chronic WM pathology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excitotoxic damage to white matter.

Glutamate kills neurons by excitotoxicity, which is caused by sustained activation of glutamate receptors. In recent years, it has been shown that glutamate can also be toxic to white matter oligodendrocytes and to myelin by this mechanism. In particular, glutamate receptor-mediated injury to these cells can be triggered by activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid,...

متن کامل

Roles of white matter in central nervous system pathophysiologies

The phylogenetic enlargement of cerebral cortex culminating in the human brain imposed greater communication needs that have been met by the massive expansion of WM (white matter). Damage to WM alters brain function, and numerous neurological diseases feature WM involvement. In the current review, we discuss the major features of WM, the contributions of WM compromise to brain pathophysiology, ...

متن کامل

Histone deacetylase inhibitors preserve white matter structure and function during ischemia by conserving ATP and reducing excitotoxicity.

The importance of white matter (WM) injury to stroke pathology has been underestimated in experimental animal models and this may have contributed to the failure to translate potential therapeutics into the stroke clinic. Histone deacetylase (HDAC) inhibitors are neuroprotective and also promote neurogenesis. These properties make them ideal candidates for stroke therapy. In a pure WM tract (is...

متن کامل

Electrical responses of oligodendrocytes to pathological stimuli

......................................................................................... 3 Table of contents................................................................................4 List of figures................................................................................. 10 List of tables................................................................................... 17 Ackno...

متن کامل

P2X7 receptors mediate ischemic damage to oligodendrocytes.

Brain ischemia leading to stroke is a major cause of disability in developed countries. Therapeutic strategies have most commonly focused on protecting neurons from ischemic damage. However, ischemic damage to white matter causes oligodendrocyte death, myelin disruption, and axon dysfunction, and it is partially mediated by glutamate excitotoxicity. We have previously demonstrated that oligoden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of anatomy

دوره 219 1  شماره 

صفحات  -

تاریخ انتشار 2011